Prezentare
     Distinctii / Awards
     Departamente
     Cercetare
     Parteneri
     Alumni
     Sustenabilitate
     Oferta educationala
     Studenti
     Admitere
     Examen finalizare studii
     International
     Alegeri academice


Gabriela Bodea,, Clash-ul crizelor sau viclenia lumii asimetrice (Ediția a doua), Presa Universitară Clujeană, 2023
vezi si alte aparitii editoriale

Facebook LinkedIn Twitter
Contact
Str. Teodor Mihali, Nr. 58-60 400591,
Cluj Napoca, Romania
Tel: +40 264-41.86.55
Fax: +40 264-41.25.70

   
Universitatea Babes-Bolyai | Noutati UBB
FSEGA Online | FSEGA SIS | FSEGA Alumni | Sustenabilitate
Executive Education | FSEGA Student Job Market
Contact | Harta Site | Viziteaza FSEGA

Kristály, A. (2018) Journal de Mathématiques Pures et Appliquées [Matematică, Q1]

Autor: Ovidiu Ioan Moisescu

Publicat: 24 Noiembrie 2020


Kristály, A. (2018) Sharp uncertainty principles on Riemannian manifolds: the influence of curvature. Journal de Mathématiques Pures et Appliquées, 119, 326-346.

DOI: https://doi.org/10.1016/j.matpur.2017.09.002

✓ Publisher: Elsevier
✓ Web of Science Core Collection: Science Citation Index Expanded
✓ Categories: Mathematics, Applied; Mathematics
✓ Article Influence Score (AIS): 2.366 (2018) / Q1 in all categories

Abstract: We present a rigidity scenario for complete Riemannian manifolds supporting the Heisenberg-Pauli-Weyl uncertainty principle with the sharp constant in R-n (shortly, sharp HPW principle). Our results deeply depend on the curvature of the Riemannian manifold which can be roughly formulated as follows: (a) When (M, g) has non-positive sectional curvature, the sharp HPW principle holds on (M, g). However, positive extremals exist in the sharp HPW principle if and only if (M, g) is isometric to R-n , n = dim(M). (b) When (M, g) has non-negative Ricci curvature, the sharp HPW principle holds on (M, g) if and only if (M, g) is isometric to R-n. Since the sharp HPW principle and the Hardy-Poincare inequality are endpoints of the Caffarelli-Kohn-Nirenberg interpolation inequality, we establish further quantitative results for the latter inequalities in terms of the curvature on Cartan- Hadamard manifolds.



inapoi la stiri   vezi evenimentele   home


       Copyright © 21-11-2024 FSEGA. Protectia datelor cu caracter personal FSEGA. Protectia datelor cu caracter personal UBB.
       Web Developer  Dr. Daniel Mican   Graphic Design  Mihai-Vlad Guta