Prezentare
     Distinctii / Awards
     Departamente
     Cercetare
     Parteneri
     Alumni
     Sustenabilitate
     Oferta educationala
     Studenti
     Admitere
     Examen finalizare studii
     International
     Alegeri academice


Gabriela Bodea,, Clash-ul crizelor sau viclenia lumii asimetrice (Ediția a doua), Presa Universitară Clujeană, 2023
vezi si alte aparitii editoriale

Facebook LinkedIn Twitter
Contact
Str. Teodor Mihali, Nr. 58-60 400591,
Cluj Napoca, Romania
Tel: +40 264-41.86.55
Fax: +40 264-41.25.70

   
Universitatea Babes-Bolyai | Noutati UBB
FSEGA Online | FSEGA SIS | FSEGA Alumni | Sustenabilitate
Executive Education | FSEGA Student Job Market
Contact | Harta Site | Viziteaza FSEGA

Baricz, Á., Kokologiannaki, C. & Pogány, T. (2018) Proceedings of the American Mathematical Society [Matematică, Q2]

Autor: Ovidiu Ioan Moisescu

Publicat: 24 Noiembrie 2020


Baricz, Á., Kokologiannaki, C. & Pogány, T. (2018) Zeros of Bessel function derivatives. Proceedings of the American Mathematical Society, 146(1), 209-222.

DOI: https://doi.org/10.1090/proc/13725

✓ Publisher: American Mathematical Society
✓ Web of Science Core Collection: Science Citation Index Expanded
✓ Categories: Mathematics, Applied; Mathematics
✓ Article Influence Score (AIS): 0.830 (2018) / Q2 in all categories

Abstract: We prove that for nu > n - 1 all zeros of the nth derivative of the Bessel function of the first kind J(nu) are real. Moreover, we show that the positive zeros of the nth and (n + 1) th derivative of the Bessel function of the first kind J(nu) are interlacing when nu >= n and n is a natural number or zero. Our methods include the Weierstrassian representation of the nth derivative, properties of the Laguerre-Polya class of entire functions, and the Laguerre inequalities. Some similar results for the zeros of the first and second derivatives of the Struve function of the first kind H-nu are also proved. The main results obtained in this paper generalize and complement some classical results on the zeros of Bessel and Struve functions of the first kind. Some open problems related to Hurwitz's theorem on the zeros of Bessel functions are also proposed.



inapoi la stiri   vezi evenimentele   home


       Copyright © 21-11-2024 FSEGA. Protectia datelor cu caracter personal FSEGA. Protectia datelor cu caracter personal UBB.
       Web Developer  Dr. Daniel Mican   Graphic Design  Mihai-Vlad Guta